Oligophosphan-Liganden, XXX¹⁾

Mono- und Bis(distickstoff)molybdän(0)-Komplexe des dreizähnigen Chelat-Phosphans MeP(CH₂CH₂CH₂PMe₂)₂: Synthesen, Strukturen und Reaktionen mit Kohlendioxid

Lutz Dahlenburg* und Bernd Pietsch

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (FRG)

Eingegangen am 24. April 1988

Key Words: Dinitrogen complexes / Carbon dioxide complexes / Molybdenum complexes

Die Reduktion von *mer*-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂] \cdot 0.75 THF mit fein verteiltem Natrium in Gegenwart eines Äquivalents PMe₃ in THF unter N₂ ergibt den Bis(distickstoff)-Komplex Mo(N₂)₂[MeP(CH₂CH₂CH₂PMe₂)₂](PMe₃) (1) als Gemisch von *cis*- und *trans*-Isomeren. Die Umsetzung von 1 mit PMe₃ liefert das Mono(distickstoff)-Derivat Mo(N₂)[MeP(CH₂CH₂-CH₂PMe₂)₂](PMe₃)₂ (2), das auch aus *mer*-MoCl₃[MeP(CH₂CH₂-CH₂PMe₂)₂] \cdot 0.75 THF, Na, N₂ und überschüssigem PMe₃ entsteht. 1 und 2 reagieren mit CO₂ zu Mo(CO₃)(CO)[MeP(CH₂CH₂-CH₂PMe₂)₂](PMe₃) (3), das im Vakuum, nicht aber in Lösung, PMe₃ unter Bildung von Mo(CO₃)(CO)[MeP(CH₂CH₂-PMe₂)₂] (4) verliert. Für das *mer*, *cis*-Isomer von 2 liegt eine Röntgenstrukturanalyse vor.

In mehreren vorausgegangenen Mitteilungen dieser Reihe hatten wir uns auch mit der Reaktivität solcher Metallkomplexe gegenüber CO₂ befaßt, in denen das Zentralatom von drei- oder vierzähnigen Phosphan-Liganden $R_nP(CH_2CH_2PR_2)_{3-n}$ (n = 0, 1) koordiniert ist, und in diesem Zusammenhang vornehmlich entsprechende Derivate der Platin-Metalle Rhodium²⁻⁵⁾ und Ruthenium⁶⁾ studiert. Diese Arbeiten haben wir nunmehr auf das Molybdän ausgedehnt.

Erste Versuche, CO2-Komplexe dieses Metalls darzustellen, wurden von Chatt et al.7) unternommen. Sie erhielten durch Ligandenaustausch zwischen $cis-Mo(N_2)_2(PMe_2Ph)_4$ und CO₂ ein als Mo(CO₂)₂(PMe₂Ph)₄ formuliertes - in dieser Form aber vermutlich fehlinterpretiertes^{8,9c)} – Primärprodukt, das in Lösung unter Phosphan-Verlust zu zweikernigem Mo₂(µ-CO₃)₂(CO)₂(PMe₂Ph)₆ assoziiert. In ähnlicher Weise soll die Reaktion von trans-Mo- $(N_2)_2(Ph_2PCH_2CH_2PPh_2)_2$ mit CO₂ in Toluol bei Bestrahlung des Gemischs zu einem (wiederum unter Vorbehalt) als Bis(kohlendioxid)-Komplex Mo(CO₂)₂(Ph₂PCH₂CH₂PPh₂)₂ angesehenen Material führen¹⁰, wohingegen bei Umsetzung im siedenden Lösemittel Mo(CO)₂(Ph₂PCH₂CH₂PPh₂)₂ und Ph₂P(O)CH₂CH₂P(O)Ph₂ als Produkte nachgewiesen wurden¹¹⁾. Verbürgte Bis(kohlendioxid)-Verbindungen von Mo(0), trans-Mo(CO₂)₂(PMe₃)₄^{9a,c)}, mer,trans- $Mo(CO_2)_2(PMe_3)_3(CNiPr)^{9b,c}$ und mer, trans- $Mo(CO_2)_2(PMe_3)_3$ -(CNCH₂Ph)^{9c)}, wurden von Carmona et al. ausgehend von cis-Mo- $(N_2)_2(PMe_3)_4^{(12)}$ synthetisiert. Die Reaktion zwischen Mo-(N₂)₂(PMe₃)₄ und CO₂ kann allerdings außer zu Mo(CO₂)₂(PMe₃)₄ auch zu den Mo(II)-Derivaten Mo(CO₃)(CO)(PMe₃)₄ und Mo₂(µOligophosphine Ligands, XXX¹⁾. – Mono- and Bis(dinitrogen)molybdenum(0) Complexes Containing the Tridentate Chelate Phosphine MeP(CH₂CH₂CH₂PMe₂)₂: Syntheses, Structures, and Reactions with Carbon Dioxide

The reduction of *mer*-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂] \cdot 0.75 THF with highly dispersed sodium in the presence of one equivalent of PMe₃, in THF under N₂, yields the bis(dinitrogen) complex Mo(N₂)₂[MeP(CH₂CH₂CH₂PMe₂)₂](PMe₃) (1) as a mixture of *cis* and *trans* isomers. Reaction of 1 with PMe₃ affords the mono(dinitrogen) derivative Mo(N₂)[MeP(CH₂CH₂CH₂PMe₂)₂]-(PMe₃)₂ (2) which is also formed from *mer*-MoCl₃[MeP(CH₂CH₂CH₂-CH₂PMe₂)₂] \cdot 0.75 THF, Na, N₂, and excess PMe₃. 1 and 2 react with CO₂ to give Mo(CO₃)(CO)[MeP(CH₂CH₂CH₂PMe₂)₂]-(PMe₃) (3) which in vacuo (but not in solution) forms Mo(CO₃)-(CO)[MeP(CH₂CH₂CH₂PMe₂)₂] (4) by loss of PMe₃. The *mer,cis* isomer of **2** has been characterized by an X-ray structure analysis.

 $CO_{3}_{2}(CO)_{2}(PMe_{3})_{6}$ sowie zu der gemischtvalenten vierkernigen Verbindung $Mo_{4}(\mu_{4}-CO_{3})(\mu_{2}-O)_{2}(\mu_{2}-OH)_{4}(O)_{2}(CO)_{2}(PMe_{3})_{6}$ führen ^{8,13)}.

Da die Bildung der mehrkernigen Nebenprodukte mit Dissoziationsprozessen der einzähnigen Stützliganden vom zentralen Molybdän-Atom verknüpft ist, erwarteten wir einen übersichtlicheren Reaktionsverlauf bei Einbindung des Zentralatoms in ein dissoziationsinertes Oligophosphan-Chelatsystem wie z. B. PhP(CH₂CH₂-CH₂PPh₂)₂. Die Bis(distickstoff)molybdän(0)-Komplexe dieses Liganden, mer.trans-Mo(N₂)₂[PhP(CH₂CH₂CH₂PPh₂)₂](PR₃) (PR₃ = PMe₃, PMe₂Ph, PMePh₂), die von uns bereits vor geraumer Zeit synthetisiert^{14,15)} und kürzlich auch von anderer Seite¹⁶⁾ beschrieben wurden, reagieren unter schonenden Bedingungen mit CO₂ jedoch nicht. Aus diesem Grunde haben wir uns um entsprechende N₂-Edukte des Molybdäns bemüht, die das basischere permethylierte Trisphosphan MeP(CH₂CH₂CH₂PMe₂)₂ als stützenden Chelatliganden enthalten. Ihre Synthese, Charakterisierung und CO₂-Reaktionen werden nachfolgend beschrieben.

Präparative Ergebnisse

Während der als CH_2Cl_2 -Solvat zugängliche Trichloro-Komplex mer-MoCl_3[PhP(CH_2CH_2CH_2PPh_2)_2] · CH_2Cl_2^{14,17)} in THF-Suspension unter N₂ in Gegenwart geringer Überschüsse einzähniger Phosphane PR₃ mit Natrium-Amalgam als Reduktionsmittel glatt in N₂-Derivate von Mo(0) übergeführt werden kann¹⁴, ergibt die in entsprechender Weise vorgenommene Na/Hg-Reduktion von *mer*-MoCl₃[MeP-(CH₂CH₂CH₂PMe₂)₂] \cdot 0.75 THF¹⁷ lediglich Mo(II)-Verbindungen des Typs *mer*,trans-MoCl₂[MeP(CH₂CH₂CH₂-PMe₂)₂](PR₃)¹⁷. Die demnach schwierigere Reduzierbarkeit des vom permethylierten Trisphosphan koordinierten Mo(III)-Komplexes reflektiert die gegenüber PhP(CH₂CH₂-CH₂PPh₂)₂ stärkere Donorkapazität von MeP(CH₂CH₂-CH₂PMe₂)₂ und deckt sich weiterhin mit dem elektrochemischen Redoxverhalten der beiden Trichloride: In ihren Cyclovoltamogrammen beobachtet man nach Überführung des Zentralatoms in die Oxidationsstufe II nämlich lediglich bei Phenyl-Substitution des Chelat-Phosphans zusätzliche kathodische Stromspitzen, die einer weiteren Reduktion der in Lösung vorhandenen Komplexe zugeordnet werden können¹⁷.

Abb. 1. Mögliche Strukturen der Komplexe $Mo(N_2)_2[MeP-(CH_2CH_2CH_2PMe_2)_2](PMe_3)$ (1) (oben) und $Mo(N_2)[MeP-(CH_2CH_2CH_2PMe_2)_2](PMe_3)_2$ (2) (unten)

Die Umwandlung von mer-MoCl₃[MeP(CH₂CH₂CH₂-PMe₂)₂] \cdot 0.75 THF in N₂-Derivate von Mo(0) gelingt aber mit wirksameren Reduktionsmitteln wie z. B. feinverteilten Alkalimetallen: wird der Trichloro-Komplex in Gegenwart einer äquimolaren Menge an PMe₃ unter N₂ mit einer Na-Dispersion in THF gerührt, so entsteht Mo(N₂)₂[MeP(CH₂-CH₂CH₂PMe₂)₂](PMe₃) (1) als ein stark zur Ölbildung neigendes Gemisch der *fac,cis*- und mer,trans-Isomere 1a und 1b (vgl. Abb. 1). Eine vollständige Trennung von 1a und 1b gelang zwar nicht, doch ließ sich durch Chromatographie

einer Lösung des Isomerengemischs in *n*-Hexan auf einer Kieselgel-Säule bei -30 °C das *fac,cis*-Isomer **1a** weitgehend anreichern.

Der äußerst luftempfindliche Komplex 1 ist in Lösung unter N₂ haltbar, gibt beim Trocknen im Vakuum aber leicht N₂ ab. Der Zerfall von 1 im Vakuum dürfte, ähnlich wie es für den thermischen Abbau von $cis-Mo(N_2)_2(PMe_3)_4$ vermutet wurde^{12b)}, durch Austritt eines der beiden N₂-Liganden aus der Koordinationssphäre und Bildung des unterkoordinierten 16-e-Fragments Mo(N₂)[MeP(CH₂CH₂-CH₂PMe₂)₂](PMe₃) eingeleitet werden. Da 16-e-Intermediate des allgemeinen Typs Mo(N₂)L₄ in den geschwindigkeitsbestimmenden Teilschritten einer ganzen Reihe von Substitutionsreaktionen an Bis(distickstoff)molybdän(0)-Komplexen durchlaufen werden¹⁸⁻²⁰⁾, sollte sich ein durch N₂-Dissoziation aus 1 hervorgehendes Komplexfragment $Mo(N_2)[MeP(CH_2CH_2CH_2PMe_2)_2](PMe_3)$ besonders deutlich daran zu erkennen geben, daß bei einem an der Bis-(distickstoff)-Verbindung vorgenommenen Ligandenaustausch nur einer der beiden N2-Liganden verdrängt wird. Eine solche gezielte Substitution gelingt mit PMe₃, das selbst im Überschuß nur monosubstituierend wirkt und dabei quantitativ $Mo(N_2)[MeP(CH_2CH_2CH_2PMe_2)_2](PMe_3)_2$ (2) in Form des reinen mer, cis-Isomers 2a (Abb. 1) liefert. Die ausschließliche Bildung dieser einen Koordinationsgeometrie, für die an sich vier Möglichkeiten bestehen (Abb. 1), gibt einen deutlichen Hinweis darauf, daß dem bei der Substitution durchlaufenen 16-e-Fragment eine quadratischplanare Struktur mit apical gebundenem N₂-Liganden zuzuweisen ist. Komplex 2 wird auch aus mer-MoCl₃[Me- $P(CH_2CH_2CH_2PMe_2)_2] \cdot 0.75$ THF, Na-Sand, und N₂ in Gegenwart von überschüssigem PMe3 erhalten. Er entsteht dann aber als Gemisch der in Abb. 1 skizzierten mer, cisund fac, cis-Isomere 2a und 2b.

Der in Hexan, Benzol, Toluol, Diethylether, THF und Aceton lösliche Chelatkomplex 2 unterscheidet sich in mehrerlei Hinsicht von der formal analogen Verbindung $Mo(N_2)(PMe_3)_5^{12b,21,22)}$: Letztere ist äußerst luftempfindlich und vermag einen ihrer PMe_3-Liganden gegen N_2 reversibel auszutauschen^{12b}; **2a** und **2b** hingegen sind bezüglich einer PMe_3/N_2-Resubstitution irreversibel und können an Luft gehandhabt werden.

Spektroskopische und strukturanalytische Resultate

Das IR-Spektrum einer Lösung von **1a**, **b** in Toluol zeigt im Bereich für $\tilde{v}(NN)$ die für das *cis*-Isomer **1a** zu fordernden zwei Absorptionen als intensive Banden bei 1967 und 2025 cm⁻¹, die in Analogie zu den an *cis*-Mo(N₂)₂(PMe₃)₄ gemessenen Werten, 1965 und 2010 cm⁻¹ ^{12b}, zugeordnet wurden. Die asymmetrische NN-Valenzschwingung des *trans*-Isomers **1b** absorbiert bei 1955 cm⁻¹. Die IR-Spektren des reinen Mono(distickstoff)-Komplexes **2a** und des Isomerengemischs **2a**, **b** ließen in den verschiedensten Medien für beide Isomere praktisch deckungsgleiche Banden erkennen, deren Wellenzahlen in Nujol 1940, in Benzol 1948, in Toluol 1952, in Cyclohexan 1967 und in *n*-Hexan 1970 cm⁻¹ betrugen. Auch andere Mono(distickstoff)-Chelatkomplexe des Molybdäns, die eine ähnliche *mer/fac*-Isomerie wie **2a**, **b** aufweisen, z. B. $Mo(N_2)$ [PhP(CH₂CH₂PPh₂)₂][1,2-(Me₂As)₂-C₆H₄]²³⁾, liefern für die NN-Valenzschwingungen ihrer Isomere solch überlagerte IR-Banden.

Die Zuordnung der 1a,b und 2a,b kennzeichnenden Koordinationsgeometrien gelang mit Hilfe der ³¹P-NMR-Spektroskopie. Die an [D₆]Benzol-Lösungen des Isomerengemischs 1a, b bei 146 MHz beobachteten Aufspaltungsmuster gehören zum Spektrentyp AM₂X und weisen je eine trans-ständige P-Kerne charakterisierende starke Kopplung zwischen P_A und P_X auf. Von den in Abb. 1 für Komplex 1 dargestellten Koordinationsmöglichkeiten sind nach diesen Befunden damit nur die Strukturen a und b möglich. Die individuelle Zuweisung der beiden Spinsvsteme zu 1a und 1b erfolgte durch Spektrenvergleich mit Hilfe einer Probe, in der die cis-Verbindung 1a chromatographisch angereichert worden war. Mit $P_{A,X} \equiv MeP(CH_2-)_2$ bzw. PMe₃ bei willkürlicher welchselseitiger Zuordnung der Resonanzen und $P_M \equiv -CH_2PMe_2$ gilt für die beiden Isomere: 1a: $\delta(P_A) = 4.28, \ \delta(P_M) = -0.54, \ \delta(P_X) = -9.05, \ cis {}^{2}J(\mathbf{P}_{A}\mathbf{P}_{M}) = cis^{2}J(\mathbf{P}_{M}\mathbf{P}_{X}) = 23, trans^{2}J(\mathbf{P}_{A}\mathbf{P}_{X}) = 97 \text{ Hz};$ **1 b**: $\delta(P_A) = 0.71$, $\delta(P_M) = -2.17$, $\delta(P_X) = -4.83$, cis- ${}^{2}J(P_{A}P_{M}) = 27$, trans- ${}^{2}J(P_{A}P_{X}) = 101$, cis- ${}^{2}J(P_{M}P_{X}) =$ 22 Hz.

Abb. 2. Experimentelles und simuliertes ³¹P-NMR-Spektrum von mer,cis-Mo(N₂)[MeP(CH₂CH₂CH₂PMe₂)₂](PMe₃)₂ (2a)

Für das aus der Umsetzung von 1 mit PMe₃ erhaltene *mer,cis*-Isomer **2a** des Komplexes Mo(N₂)[MeP(CH₂-CH₂CH₂PMe₂)₂](PMe₃)₂ lieferte das bei Raumtemperatur in [D₈]Toluol aufgenommene 146-MHz-³¹P-NMR-Spektrum lediglich stark überlagerte Signalgruppen. Durch Abkühlen der Lösung auf 220 K wurde das in Abb. 2 dargestellte AMNQ₂-Aufspaltungsmuster erhalten, das aus der Reihe der vier für **2** denkbaren geometrischen Isomere eindeutig das in Abb. 1 mit **a** gekennzeichnete anzeigte. Die dem in Abb. 2 gleichfalls wiedergegebenen rechnerisch reproduzierten Spektrum²⁴⁾ zugehörigen Parameter sind: $\delta(P_A) = -3.53$, $\delta(P_M) = -6.09$, $\delta(P_N) = -6.37$, $\delta(P_Q) = -7.64$, *trans*-² $J(P_AP_M) = 84.0$, *cis*-² $J(P_AP_N) = -18.3$, *cis*-² $J(P_AP_Q) = -29.2$, *cis*-² $J(P_MP_N) = -23.5$, *cis*-² $J(P_MP_Q) = -23.9$, *cis*-² $J(P_NP_Q) = -18.2$ Hz [Wahl der relativen Vor-

zeichen der cis- und trans-Kopplungskonstanten in Anlehnung an die Literatur²⁵; Zuordnung von MeP(CH_2-)₂ und PMe₃ zu P_A, P_M und P_N nicht sicher]. Um zu klären, ob die völlig unterschiedlichen Erscheinungsbilder der bei Raumtemperatur und bei 220 K aufgenommenen Spektren lediglich auf eine Temperaturabhängigkeit der Differenzen der ³¹P-Verschiebungen im Fünfspin-System oder aber auf Isomerisierungsprozesse zurückzuführen ist, wurde die Koordinationsgeometrie von 2a auch mit Hilfe der ¹³C-NMR-Spektroskopie überprüft. Die erhaltenen Spektren zeigten sowohl bei 310 K als auch bei 220 K die allein mit der mer, cis-Koordination 2a gemäß Abb. 1 zu vereinbaren 8 Resonanzen [$\delta = 15.14$ (br. dd, J = 4, 16 Hz), 17.19 (m), 21.83 (br. d, J = 3 Hz), 25.11 (m), 27.34 (m), 29.83 (m), 36.23 (br. d, J = 15 Hz), 39.36 (m)], so daß eine bei höherer Temperatur ablaufende Isomerisierung des Komplexes ausgeschlossen werden kann.

Abb. 3. Experimentelles und simuliertes ³¹P-NMR-Spektrum eines 1:1-Isomerengemischs von *mer.cis*-Mo(N₂)[MeP(CH₂CH₂CH₂-PMe₂)₂](PMe₃)₂ (**2a**) und *fac.cis*-Mo(N₂)[MeP(CH₂CH₂CH₂-PMe₂)₂](PMe₃)₂ (**2b**)

Das aus mer-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂] \cdot 0.75 THF, N₂ und PMe₃ durch Reduktion mit Natrium-Amalgam hervorgegangene Isomerengemisch des Komplexes 2 ergab in [D₈]Toluol bei 220 K das in Abb. 3 dargestellte 146-MHz-³¹P-NMR-Spektrum. Wie das dort ebenfalls abgebildete rechnerisch simulierte Spektrum²⁴⁾ zeigt, stellt es eine Überlagerung des AMNQ₂-Musters von **2a** mit einem als AMNOP beschreibbaren Spinsystem dar, das sich nur mit der fac, cis-Geometrie 26 gemäß, Abb. 1 verträgt. Das Konzentrationsverhältnis 2a:2b liegt nahe bei 1:1. Die für die Computer-Darstellung des Spektrums von 2b benutzten Verschiebungen und Kopplungskonstanten lauten: $\delta(\mathbf{P}_A) =$ 1.72, $\delta(P_M) = -2.82$, $\delta(P_N) = -4.41$, $\delta(P_O) = -4.96$, $\delta(P_P)$ $= -6.80, \ cis^2 J(P_A P_M) = -24.0, \ cis^2 J(P_A P_N) = -22.6,$ $cis^{-2}J(P_AP_O) = -22.5$, $trans^{-2}J(P_AP_P) = 86.4$, $cis^{-2}J(P_AP_P) = 86.4$ $^{2}J(P_{M}P_{N}) = -19.8$, $cis^{-2}J(P_{M}P_{O}) = -19.2$, $cis^{-2}J(P_{M}P_{O}) = -19.2$

 ${}^{2}J(P_{M}P_{P}) = -26.5$, trans- ${}^{2}J(P_{N}P_{O}) = 90.3$, cis- ${}^{2}J(P_{N}P_{P}) = -21.8$, cis- ${}^{2}J(P_{O}P_{P}) = -18.1$ Hz (wegen der relativen Vorzeichen von cis- ${}^{2}J$ und trans- ${}^{2}J$ vgl. Lit. 25). Aufgrund seines ausschließlich cis-Kopplungen aufweisenden Signals läßt sich der Kern P_{M} dem zum N₂-Liganden trans-ständigen Me₂P-Substituenten des Trisphosphans zuweisen; weitergehende Zuordnungen können jedoch nur willkürlich getroffen werden.

Abb. 4. Perspektivische Darstellung der Molekülstruktur 2a

Tab. 1. Ausge	ewählte Bindu	ngslängen	[pm] und	-winkel	[^]	von	2 a
---------------	---------------	-----------	----------	---------	-----	-----	-----

Bindung	Länge	Atome	Winkel	Atome	Winkel
Mo_P(1)	247.0(1)	P(1)-Mo-P(2)	95.0(1)	P(3)-Mo-P(5)	171.1(1)
Mo-P(2)	245.7(1)	P(1)-Mo-P(3)	91.5(1)	P(4)_Mo_P(5)	85.1(1)
Mo-P(3)	244.2(1)	P(1)-Mo-P(4)	94,7(1)	P(1)-Mo-N(1)	178.0(1)
MO-P(4)	241.8(1)	P(1)-Mo-P(5)	93.1(1)	P(2)-Mo-N(1)	83.1(1)
Mo-P(5)	244.0(1)	P(2)-Mo-P(3)	95.2(1)	P(3)-Mo-N(1)	87.8(1)
Mo-N(1)	197.8(4)	P(2)-MO-P(4)	170.0(1)	P(4)-Mo-N(1)	87.2(1)
N(1)-N(2)	112.7(6)	P(2)-Mo-P(5)	92.0(1)	P(5)_Mo_N(1)	87.9(1)
		P(3)-Mo-P(4)	86.9(1)	Mo-N(1)-N(2)	179.3(4)

Die Röntgenstrukturanalyse bestätigt die für **2a** bereits aus spektroskopischen Daten abgeleitete pseudooktaedrische *mer,cis*-Koordinationsgeometrie, die nach den in Tab. 1 zusammengestellten Bindungsparametern lediglich leicht verzerrt ist (vgl. auch Abb. 4). Der end-on-gebundene N₂-Ligand ist in praktisch idealer Weise linear mit dem Molybdän-Atom verknüpft: Valenzwinkel Mo-N-N179.3(5)°. Der Metall-N-Abstand, 197.8(4) pm, und die N-N-Bindungslänge, 112.7(6) pm, zeigen keine signifikanten Abweichungen von den an den vergleichbaren Mono-(distickstoff)-Komplexen $M(N_2)(PMe_3)_5$ ($M = Mo^{210}$, W^{260}) gemessenen Werten. Wie bei den letztgenannten Verbindungen wird auch bei **2a** aufgrund des gegenüber PR₃ leicht erhöhten *trans*-Einflusses von N₂ der längste Metall – P-Abstand zwischen Zentralatom und der zum N₂-Liganden in *trans*-Position befindlichen PMe₃-Gruppe beobachtet: d[Mo-P(1)] = 247.0(1) pm gegenüber 241.8(1)-245.7(1) pm für die restlichen Mo-P-Bindungen.

Reaktionen mit Kohlendioxid

Der Mono(distickstoff)-Komplex Mo(N₂)[MeP(CH₂CH₂- $CH_2PMe_2_2$ (PMe₃)₂ setzt sich sowohl als isomerenreine Verbindung 2a als auch als Isomerengemisch 2a, b mit CO₂ bei Normaldruck und Raumtemperatur in einer Lösung von n-Hexan in glatter Reaktion zum orangen Carbonatocar- $Mo(CO_3)(CO)[MeP(CH_2CH_2CH_2PMe_2)_2]$ bonyl-Derivat (PMe₃) (3) um. Verbindung 3 entsteht auch aus dem Isomerengemisch 1a, b des Bis(distickstoff)-Komplexes Mo- $(N_2)_2[MeP(CH_2CH_2CH_2PMe_2)_2](PMe_3)$ und CO₂, wobei sich in diesem Fall allerdings die gewählten Reaktionsbedingungen wesentlich auf die Zusammensetzung der gebildeten Produkte auswirken. So war z. B. durch Rühren einer eisgekühlten Lösung von 1a,b in n-Hexan unter CO₂ keine Umsetzung zu erreichen; bei Raumtemperatur verlief die Reaktion so langsam, daß die Abscheidung des in unpolaren Solvenzien unlöslichen Komplexes 3 aus dem Reaktionsgemisch selbst nach 2 d noch nicht beendet war. Einleiten von CO₂ in eine CO₂-gesättigte Lösung des Komplexes 1 in n-Hexan führte hingegen zu einer raschen und quantitativen Bildung von 3; d.h. es bedarf zum vollständigen Austausch der N₂-Liganden von 1a, b gegen CO₂ ersichtlich einer stetigen Entfernung des freigesetzten N2 aus dem Reaktionssystem. Dementsprechend ließ sich auch im Autoklaven unter CO₂-Druck, also unter Bedingungen, die sich für die Synthese von trans-Mo(CO₂)₂(PMe₃)₄ aus cis-Mo(N₂)₂-(PMe₃)₄ als günstig erwiesen hatten^{9a,c)}, keine vollständige Umsetzung von 1 zu 3 erzielen. Allerdings waren in den so erhaltenen Reaktionsgemischen neben 1 und 3 auch untergeordnete Mengen eines nicht in reiner Form isolierbaren Produktes enthalten, das sich an seinen spektroskopischen Daten als $Mo(\eta^2 - CO_2)$ -Addukt zu erkennen gab: IR (Nujol): $v = 1671, 1155, 1100 \text{ cm}^{-1}$ bw. 1631, 1130, 1075 cm⁻¹ nach Markierung mit ¹³CO₂; ¹³C-NMR (C_6D_6): $\delta(^{13}CO_2) = 204$ [vgl. trans-Mo(CO₂)₂(PMe₃)₄^{9c)}: $\tilde{v} = 1670, 1155, 1100 \text{ cm}^{-1}$; $\delta = 206$].

In der gegenüber den Redoxverhältnissen im System $Mo(N_2)_2(PMe_3)_4/CO_2$ offenbar deutlich erleichterten Oxidierbarkeit des Molybdän-Atoms durch CO₂ in den Systemen $1/CO_2$ und $2/CO_2$ sehen wir eine Folge der höheren elektronischen Belastung des Zentralmetalls von 1 und 2 durch den zweifachen Chelatgriff des MeP(CH₂CH₂CH₂-PMe₂)₂-Liganden.

Der orange, siebenfach koordinierte Komplex 3 weicht nicht nur in seiner Farbe sondern auch in seinem Dissoziationsverhalten deutlich von dem formal analogen dunkelblauen Derivat Mo(CO₃)(CO)(PMe₃)₄^{8,13)} ab: während letzteres in Lösung PMe₃ verliert und dabei zu zweikernigem Mo₂(μ -CO₃)₂(CO)₂(PMe₃)₆ assoziiert⁸), ist 3 selbst bei 70 °C in Lösung noch nicht nachweisbar dissoziiert. Allerdings gibt der Komplex beim Trockenen im Diffusionspumpenvakuum seinen PMe₃-Liganden ab und geht dabei irreversibel in $Mo(CO_3)(CO)[MeP(CH_2CH_2CH_2PMe_2)_2]$ (4) über, das ähnlich wie die vergleichbaren Mo(II)-Komplexe $Mo_2(\mu$ - $CO_3)_2(CO)_2L_4$ (L = PMe₃⁸⁾, PMe₂Ph⁷⁾) zweikernig zu formulieren sein dürfte.

Nujol-Verreibungen von 3 zeigen für die CO- und CO_3^{2-} -Liganden IR-Absorptionen bei 1780 und 1598 cm⁻¹; für 4 liegen diese bei 1740 und 1598 cm⁻¹. Das ³¹P-NMR-Spektrum einer Lösung von 3 in [D₆]Benzol ist bei 146 MHz vom Typ A₂MQ [$P_A \equiv Me_2P$; P_M , $P_Q \equiv MeP$ -(CH₂-)₂, PMe₃ mit willkürlicher Signalzuordnung] und weist folgende Parameter auf: $\delta(P_A) = 31.54$, $\delta(P_M) = 6.04$, $\delta(P_{O}) = -2.77, {}^{2}J(P_{A}P_{M}) = 17, {}^{2}J(P_{A}P_{O}) = 58, {}^{2}J(P_{M}P_{O}) = 58$ 202 Hz. Die sehr große Kopplungskonstante ${}^{2}J(P_{M}P_{O})$ entspricht einer "trans"-Anordnung von PMe3 und Trisphosphan-Brücken-P-Atom im heptakoordinierten Komplex, während die äquivalenten Me₂P-Substituenten des Chelat-Maßgabe der für ${}^{2}J(\mathbf{P}_{A}\mathbf{P}_{M})$ und liganden nach $^{2}J(P_{A}P_{Q})$ beobachteten Werte relativ zu PMe₃ und MeP-(CH₂-)₂ "cis"-Positionen besetzen sollten. Das PMe₃-Dissoziationsprodukt 4 zeigte folgende ³¹P-NMR-Daten (C₆D₆, 146 MHz): $\delta(-CH_2PMe_2) = 29.56$ (d), $\delta[MeP(CH_2-)_2] =$ 16.57 (t), ${}^{2}J(PP) = 90$ Hz. ${}^{13}C$ -markiertes 3, Mo(${}^{13}CO_{3}$)- (^{13}CO) [MeP(CH₂CH₂CH₂PMe₂)₂](PMe₃), ergab in [D₆]-Benzol bei 91 MHz folgende ¹³C-NMR-Daten: $\delta(CO) =$ 288.01 [ddt, ${}^{2}J(PC) = 9$ und 26 Hz, ${}^{2}J(P_{2}C) = 48$ Hz], $\delta(CO_3^{2-}) = 164.45 [t, {}^{3}J(P_2C) = 8 Hz]$. Eine Kopplung zwischen den beiden ¹³C-Kernen trat nicht auf, so daß 3 als Komplex mit diskreten CO- und CO_3^2 -Liganden und nicht etwa als Derivat des bislang nur durch IrCl(C₂O₄)(PMe₃)₃ belegten "Kopf-Schwanz"-verknüpften Strukturelements $[C(O)OC(O)O]^{2-27}$ formuliert werden muß.

Für die finanzielle Unterstützung der Arbeit sei der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie herzlich gedankt.

Experimenteller Teil

IR-Spektren: Gitterspektrometer (Perkin-Elmer 577, 325 und 225). – NMR-Spektren: Bruker AM 360 (145.79 MHz bei ³¹P und 90.56 MHz bei ¹³C). ¹³C-Verschiebungen relativ zum C₆D₆-Signal [bezogen auf δ (TMS) = 0.0]; H₃PO₄ externer Standard für ³¹P-NMR. Positive δ -Werte zeigen Tieffeld-Verschiebungen an.

[Bis(3-dimethylphosphinopropyl)methylphosphan]bis(distickstoff)(trimethylphosphan)molybdän(0) (1): Zu 2.51 g (4.9 mmol) mer-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂] \cdot 0.75 THF¹⁷⁾ und 0.37 g (4.9 mmol) PMe₃, gelöst in 125 ml THF, wurde unter N₂ Na-Sand (0.50 g, 21.7 mmol; Alfa Products) gegeben und das Reaktionsgemisch unter einem Vorratsvolumen von 1 l N2 16 h gerührt. Die dabei nach anfänglicher Grünfärbung gebildete tiefrote Lösung wurde abpipettiert und i. Vak. zur Trockne eingeengt. Der nach Digerieren des verbleibenden Rückstands mit n-Hexan (60 ml) erhaltene Extrakt wurde über 15 ml Kieselgel 60 (Merck; Aufschlämmung in n-Hexan) unter Kühlung mit fließendem Wasser filtriert, wobei mit insgesamt 400 ml n-Hexan gründlich nachgewaschen wurde. Nach Eindampfen der vereinigten Filtrate i. Vak. verblieben 0.81 g (34%) des Isomerengemischs 1 a, b als tiefrotes Öl, das teilweise in ein orangerotes Kristallisat überging. Beim Trocknen des Produkts i. Vak. einer Hg-Diffusionspumpe war Schaumbildung infolge teilweisen N₂-Verlustes zu beobachten, so daß die elementaranalytischen Ergebnisse zwischen den für die Zusammensetzungen

 $C_{14}H_{36}MoN_4P_4 \ [noch intakte Bis(distickstoff)-Verbindung] \ und \ C_{14}.\\ H_{36}MoN_2P_4 \ [durch quantitative Abspaltung eines \ N_2-Liganden ent-standener Mono(distickstoff)-Komplex] \ lagen.$

$C_{14}H_{36}MoN_4P_4$ (480.30)	Ber. C 35.01	H 7.55	Ν	11.66
$C_{14}H_{36}MoN_2P_4$ (452.29)	Ber. C 37.18	H 8.02	Ν	6.19
	Gef. C 36.06	H 7.88	Ν	8.39

[Bis(3-dimethylphosphinopropyl)methylphosphan]mono(distickstoff)bis(trimethylphosphan)molybdän(0) (2): Der Komplex kannsowohl aus 1 durch Substitution als auch aus mer-MoCl₃[MeP-(CH₂CH₂CH₂PMe₂)₂] · 0.75 THF durch Reduktion dargestellt werden.

Aus 1 durch Substitution: 1.00 g (2.1 mmol) eines wie voranstehend beschrieben erhaltenen Isomerengemischs 1a,b wurden unter N_2 in 20 ml Benzol gelöst und mit 1.0 ml PMe₃ versetzt. Nach 8stdg. Rühren bei Raumtemp. wurde filtriert und das Filtrat i. Vak. zur Trockne eingedampft. Dabei schieden sich 1.08 g (97%) gelbe Kristalle ab, die sich ³¹P-NMR-spektroskopisch als reines *mer,cis*-Isomer 2a erwiesen.

Aus mer-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂] · 0.75 THF durch Reduktion: Zu 6.00 g (11.8 mmol) des Trichloro-Komplexes in 300 ml THF wurden 1.90 g (25.0 mmol) PMe₃ und 1.00 g (43.5 mmol) Na-Sand gegeben. Nach 16stdg. Rühren unter N₂ (Vorratsvolumen: 1 l) wurde das dunkelbraune Reaktionsgemisch filtriert. Der nach Eindampfen des Filtrats erhaltene Rückstand wurde in Toluol (insgesamt 150 ml) gelöst und die Toluol-Lösung über Kieselgel 60 (8 ml einer Toluol-Aufschlämmung) filtriert. Beim erneuten Entfernen des Lösemittels i. Vak. kristallisierten 3.10 g (49%) eines beigen Gemischs der Isomere **2a** und **2b**.

 $\begin{array}{c} C_{17}H_{45}MoN_2P_5 \ (528.37) \\ Gef. \ C \ 38.65 \ H \ 8.58 \ N \ 5.30 \\ Gef. \ C \ 38.34 \ H \ 8.65 \ N \ 5.43 \end{array}$

[Bis(3-dimethylphosphinopropyl)methylphosphan]carbonato-(carbonyl)(trimethylphosphan)molybdän(II) (3) sowie [Bis-(3-dimethylphosphinopropyl)methylphosphan]carbonato(carbonyl)molybdän(II) (4): Die Komplexe entstehen sowohl aus 1 als auchaus 2 und CO₂.

Reaktion von 1 mit Kohlendioxid: 480 mg (1.0 mmol) des Gemischs 1a, b wurden in 30 ml CO₂-gesättigtem *n*-Hexan gelöst, wobei sich 3 augenblicklich als orangegelber Niederschlag abzuscheiden begann. Dieser wurde nach 20 min abfiltriert und mit 3×5 ml *n*-Hexan gewaschen. Nach kurzer Trocknung i. Ölpumpenvak. wurden so ca. 300 mg (58%) des Komplexes 3 erhalten. Einleiten von CO₂ in die Mutterlauge führte zum erneuten Ausfallen von 3, von dem auf diese Weise weitere 190 mg (37%) gewonnen wurden.

Reaktion von 2 mit Kohlendioxid: 280 mg (0.53 mmol) des Isomerengemischs 2a, b wurden in einer Lösung von 10 ml *n*-Hexan 12 h der Einwirkung einer CO₂-Atmosphäre ausgesetzt. In dieser Zeit fielen 250 mg (92%) des orangen Komplexes 3 aus, die wie oben beschrieben gesammelt wurden.

Beim Trocknen der auf beiden Wegen gewonnenen Produkte i. Vak. einer Hg-Diffusionspumpe zum Zwecke der Elementaranalyse wurde innerhalb von 7 h das koordinierte PMe₃ von 3 vollständig abgegeben, wobei 4 erhalten wurde.

3:
$$C_{16}H_{36}MoO_4P_4$$
 (512.29) Ber. C 37.51 H 7.08
4: $C_{13}H_{27}MoO_4P_3$ (436.22) Ber. C 35.79 H 6.24
Gef. C 35.73 H 6.23

Röntgenstrukturanalyse von $2a^{28}$: Die kristallographischen Messungen wurden mit einem Vierkreisdiffraktometer des Typs Syntex P2₁ der Universität Hamburg bei 20°C unter Verwendung von Mo- K_{α} -Strahlung (Graphit-Monochromator, $\lambda = 71.07$ pm) durchgeführt. Die Daten wurden während eines Gastaufenthalts von L. D. an der Universität Konstanz mit Hilfe der dort installierten SHELXTL-Programme²⁹⁾ ausgewertet. Die ungefähren Abmessungen des aus einer übersättigten Benzol-Lösung bei Raumtemp. gewachsenen Einkristalls von 2a (C₁₇H₄₅MoN₂P₅, 528.37) betrugen $0.2 \times 0.2 \times 0.1$ mm. Er kristallisierte in der monoklinen Raumgruppe $P2_1/n$ mit a = 956.8(2), b = 1804.2(4), c = 1588.2(4) pm, $\beta = 104.39(2)^{\circ}, V = 2649 \cdot 10^{6} \text{ pm}^{3}, Z = 4, D_{ber.} = 1.33 \text{ g} \cdot \text{cm}^{-3}$ und $\mu = 7.68 \text{ cm}^{-1}$. Es wurden 6714 Intensitäten im $\Theta/2\Theta$ -Scan bis zu $2\Theta_{max} = 55^{\circ}$ gesammelt. Der benutzte Datensatz umfaßte 6146 unabhängige Reflexe mit 5004 signifikanten Strukturfaktoren $[F_{o} > 4\sigma(F_{o})]$. Es wurde keine Absorptionskorrektur durchgeführt. Die Struktur wurde durch Patterson- und anschließende Differenz-Fourier-Synthesen gelöst. Das erhaltene Strukturmodell wurde nach Vollmatrix-LSQ-Methoden mit anisotropen thermischen Parametern für alle Nichtwasserstoff-Atome verfeinert. Wasserstoff-Lagen blieben unberücksichtigt. Für 226 Parameter konvergierte die Verfeinerung bei R = 0.039 und $R_w = 0.050$ (Gewichtssetzung: w = 1). Tab. 2 enthält die abschließenden Koordinaten und Temperaturfaktoren.

Tab. 2. Atomkoordinaten und äquivalente isotrope Temperaturfaktoren U_{aq}^{a} von mer, cis-Mo(N_2)[MeP(CH₂CH₂CH₂PMe₃)₂]- $(PMe_3)_2$ (2a)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	<u>×/a</u>	<u>y/b</u>	<u>z/c</u>	<u>U</u> # 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo P(1) P(2) P(3) P(4) P(5) N(1) N(2) C(1) C(2) C(3) C(4) C(4) C(6) C(6) C(6) C(7) C(6) C(10) C(10) C(11) C(12) C(13) C(13) C(11) C(12) C(13) C(1) C(1) C(1) C(1) C(1) C(1) C(1) C(1	0.01580(4) 0.20889(13) -0.12321(16) 0.1574(14) 0.11515(13) -0.1248(13) -0.1403(4) -0.2298(6) 0.2940(11) -0.320(8) -0.0396(11) -0.1200(13) 0.2300(8) 0.0641(7) 0.3168(7) 0.2364(6) 0.0075(7) 0.1408(6) 0.0045(6) -0.0465(6) -0.2465	0.65707(2) 0.60301(7) 0.54152(8) 0.78102(7) 0.69730(7) 0.6968(2) 0.7198(3) 0.5554(5) 0.5554(5) 0.5554(5) 0.55524(5) 0.4607(4) 0.6640(4) 0.6640(4) 0.6640(4) 0.66595(4) 0.7746(4) 0.8318(3) 0.8318(3) 0.8318(3) 0.7657(4) 0.7657(4) 0.7657(4)	0.76099(2) 0.87918(7) 0.72732(10) 0.65513(8) 0.77879(8) 0.66084(8) 0.6645(3) 0.9257(5) 0.9861(4) 0.602(3) 0.925(7) 0.6322(5) 0.5411(3) 0.6685(4) 0.6736(4) 0.7652(4) 0.8834(4) 0.9475(3) 0.9475	0.0283(1) 0.0406(4) 0.0528(5) 0.0462(4) 0.0412(4) 0.0412(4) 0.047(1) 0.080(2) 0.091(3) 0.127(4) 0.132(5) 0.158(6) 0.083(3) 0.076(3) 0.076(3) 0.063(2) 0.063(2) 0.063(2) 0.069(2) 0.061(2)

^{a)}
$$U_{aq} = (U_{11} + U_{22} + U_{32})/3.$$

CAS-Registry-Nummern

1: 121865-97-2 / 2a: 121865-98-3 / 2: 121958-21-2 / 3: 121865-99-4 / 4: 121866-00-0 / mer-MoCl₃[MeP(CH₂CH₂CH₂PMe₂)₂]: 116122-71-5 / CO₂: 124-38-9

- ¹⁾ XXIX. Mitteilung: L. Dahlenburg, N. Höck, H. Berke, Chem. Ber. 121 (1988) 2083.
- ²⁾ L. Dahlenburg, C. Prengel, Organometallics 3 (1984) 934.
 ³⁾ L. Dahlenburg, C. Prengel, J. Organomet. Chem. 308 (1986) 63.

- 4) L. Dahlenburg, C. Prengel, N. Höck, Z. Naturforsch., Teil B, 41 (1986) 718
- ⁵⁾ L. Dahlenburg, C. Prengel, *Inorg. Chim. Acta* 122 (1986) 55.
 ⁶⁾ M. Antberg, L. Dahlenburg, K.-M. Frosin, N. Höck, *Chem. Ber.* 121 (1988) 859.
- ⁷⁾ J. Chatt, M. Kubota, G. J. Leigh, F. C. March, R. Mason, D. J. Yarrow, J. Chem. Soc., Chem. Commun. 1974, 1033.
- ⁸⁾ E. Carmona, F. Gonzales, M. L. Poveda, J. M. Marin, J. L.
- ⁹ ¹/₂ ¹/2
- 10) J. Chatt, W. Hussain, G. J. Leigh, Transition Met. Chem. 8 (1983) 383.
- ¹¹⁾ T. Ito, T. Kokubo, T. Yamamoto, A. Yamamoto, S. Ikeda, J. Chem. Soc., Chem. Commun. 1974, 136. ¹²⁾ ^{12a} E. Carmona, J. M. Marin, M. L. Poveda, J. L. Atwood, R.
- D. Rogers, G. Wilkinson, Angew. Chem. 94 (1982) 467; Angew. Chem., Int. Ed. Engl. 21 (1982) 441; Angew. Chem. Suppl. 1982, 1116. ^{12b} E. Carmona, J. M. Marin, M. L. Poveda, J. L. Atwood, R. D. Rogers, J. Am. Chem. Soc. 105 (1983) 3014.
- ¹³⁾ E. Carmona, J. Organomet. Chem. 358 (1988) 283.
- ¹⁴⁾ L. Dahlenburg, B. Pietsch, Z. Naturforsch., Teil B, 41 (1986) 70.
- ¹⁵⁾ B. Pietsch, L. Dahlenburg, Acta Crystallogr., Sect. C, 42 (1986) 995.
- ¹⁶⁾ T. A. George, M. A. Jackson, Inorg. Chem. 27 (1988) 924.
- ¹⁷⁾ B. Pietsch, L. Dahlenburg, Inorg. Chim. Acta 145 (1988) 195.
- ¹⁸⁾ J. Chatt, R. A. Head, G. J. Leigh, C. J. Pickett, J. Chem. Soc., Dalton Trans. 1978, 1638.
- ¹⁹⁾ B. J. Carter, J. E. Bercaw, H. B. Gray, J. Organomet. Chem. 181 (1979) 105.
- ²⁰⁾ R. A. Henderson, G. J. Leigh, C. J. Pickett, Adv. Inorg. Chem. Radiochem. 27 (1983) 197.
- ²¹⁾ E. Carmona, J. M. Marin, M. L. Poveda, R. D. Rogers, J. L.
- ²¹⁾ ^{22a)} F. G. N. Cloke, K. P. Cox, M. L. H. Green, J. Bashkin, K. Prout, J. Chem. Soc., Chem. Commun. 1982, 393. ^{22b)} M. Brookhart, K. Cox, F. G. N. Cloke, J. C. Green, M. L. H. Green, P. M. Hare, J. Bashkin, A. E. Derome, P. D. Grebenik, J. Chem.
- Soc., Dalton Trans. 1985, 423.
 ²³⁾ T. A. George, R. C. Tisdale, J. Am. Chem. Soc. 107 (1985) 5157. ^{23b)} T. A. George, R. C. Tisdale, Polyhedron 5 (1986) 297. ^{23c)} T. A. George, R. C. Tisdale, Inorg. Chem. 27 (1988) 2909.
- ²⁴⁾ Simulationsprogramm PANIC (Bruker-Software).
- ²⁵⁾ Bezüglich der relativen Vorzeichen von $cis^{-2}J(PP)$ (negativ) und trans-²J(PP) (positiv) siehe u.a.: ^{25a)} J. G. Verkade, *Coord. Chem.* Rev. 9 (1972/1973) 1. ^{25b)} R. J. Goodfellow, B. F. Taylor, J. Chem. Soc., Dalton Trans. 1974, 1676. ^{25c)} M. V. Baker, L. D. Fill Lower, *Chem. Comp. Chem.* 2010.
- ²⁶ E. Carmona, A. Galindo, M. L. Poveda, R. D. Rogers, *Inorg. Chem.* 24 (1985) 4033.
 ²⁷ T. Hurthardt, J. J. G. Chem. 24 (1985) 4033.
- ²⁷⁾ T. Herskovitz, L. J. Guggenberger, J. Am. Chem. Soc. 98 (1976) 1615.
- ²⁸⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53754, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ²⁹⁾ G. M. Sheldrick, SHELXTL, komplettes Programm zum Lösen, Verfeinern und Darstellen von Kristallstrukturen aus Beugungsdaten, Göttingen 1983.

[132/89]